

Introduction to Mathematical Quantum Theory

Solution to the Exercises

– 12.05.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $\mathcal{H} := L^2(\mathbb{R})$ and $P := -i\partial_x$ the momentum operator defined on the domain $\mathcal{D}(P) := H^1(\mathbb{R})$ as $P\psi(x) = -i\frac{\partial\psi}{\partial x}(x)$. Consider for any $\lambda \in \mathbb{R}$ the bounded operator T_λ defined for any $\psi \in \mathcal{H}$ as $T_\lambda\psi(x) = \psi(x - \lambda)$.

Prove that $\{T_\lambda\}_{\lambda \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group and that

$$T_\lambda = e^{i\lambda P} = e^{\lambda\partial_x}. \quad (1)$$

Proof. By definition it follows that if $\lambda = 0$ then for any $\psi \in \mathcal{H}$ we get $T_0\psi(x) = \psi(x)$ and therefore $T_0 = \text{id}$. On the other hand, let $\lambda, \mu \in \mathbb{R}$; then for any $\psi \in \mathcal{H}$ we get $T_\lambda T_\mu \psi(x) = T_\mu \psi(x - \lambda) = \psi(x - \lambda - \mu) = T_{\lambda+\mu}(x)$. Consider now $\lambda \in \mathbb{R}$, $\psi, \varphi \in \mathcal{H}$; to prove that T_λ is a unitary operator we compute T_λ^* to get

$$\langle \psi, T_\lambda^* \varphi \rangle = \langle T_\lambda \psi, \varphi \rangle = \int_{\mathbb{R}} \overline{\psi(x - \lambda)} \varphi(x) dx = \int_{\mathbb{R}} \overline{\psi(x)} \varphi(x + \lambda) dx = \langle \psi, T_{-\lambda} \varphi \rangle,$$

and as a consequence $T_\lambda^* = T_{-\lambda}$; therefore we get $T_\lambda T_\lambda^* = T_\lambda T_{-\lambda} = T_0 = \text{id}$, $T_\lambda^* T_\lambda = T_{-\lambda} T_\lambda = T_0 = \text{id}$ and for any $\lambda \in \mathbb{R}$, T_λ is unitary.

Consider now A the infinitesimal generator of $\{T_\lambda\}_{\lambda \in \mathbb{R}}$. Suppose $\psi \in \mathcal{H}$; recall that if \mathcal{F} represent the Fourier transform, we get

$$\mathcal{F}T_\lambda \psi(k) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ikx} \psi(x - \lambda) dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ik(x+\lambda)} \psi(x) dx = e^{-i\lambda k} \hat{\psi}(k).$$

Suppose now that $\psi \in H^1(\mathbb{R})$; then we get for any λ

$$\mathcal{F} \left(\frac{T_\lambda - \text{id}}{\lambda} \psi \right)(k) = \frac{e^{-i\lambda k} - 1}{\lambda} \hat{\psi}(k).$$

Given that $\mathcal{F}P\psi(k) = k\hat{\psi}(k)$, we get

$$\left\| \frac{T_\lambda - \text{id}}{\lambda} \psi - iP\psi \right\|_2^2 = \left\| \frac{e^{-i\lambda k} - 1}{\lambda} \hat{\psi} - ik\hat{\psi} \right\|_2^2 = \int_{\mathbb{R}} \left| \frac{e^{-i\lambda k} - 1}{\lambda} - ik \right|^2 |\psi(k)|^2 dk$$

Given that $\left| \frac{e^{-i\lambda k} - 1}{\lambda} \right|^2 \leq |k|^2$, and $|k|^2 |\hat{\psi}(k)|^2 \in L^1(\mathbb{R})$, we can conclude

$$\lim_{\lambda \rightarrow 0} \left\| \frac{T_\lambda - \text{id}}{\lambda} \psi - iP\psi \right\|_2^2 = \int_{\mathbb{R}} \lim_{\lambda \rightarrow 0} \left| \frac{e^{-i\lambda k} - 1}{\lambda} - ik \right|^2 |\psi(k)|^2 dk = 0.$$

So clearly $H^1(\mathbb{R}) \subseteq \mathcal{D}(A)$ and A is an extension of P . Now, given that as a consequence we have that P^* is an extension of A^* and that both A and P are self-adjoint, we get that $A = P$; therefore by Stone theorem $e^{\lambda \partial_x} = e^{i\lambda P} = T_\lambda$.

□

Exercise 2

Let \mathcal{H} be an Hilbert space, A a symmetric operator and $\mu > 0$ a positive real number. Prove that the following are equivalent.

- a** A is self-adjoint.
- b** $\text{Ran}(A + i\mu \text{id}) = \text{Ran}(A - i\mu \text{id}) = \mathcal{H}$.

Proof. In class we proved that if A is symmetric, $A = A^*$ if and only if $\text{Ran}(A \pm i\text{id}) = \mathcal{H}$. Now, A is symmetric if and only if $\frac{1}{\mu}A$ is, and given that $A + i\mu \text{id} = \mu\left(\frac{1}{\mu}A + i\text{id}\right)$, $\text{Ran}(A + i\mu \text{id}) = \text{Ran}\left(\frac{1}{\mu}A + i\text{id}\right)$, the result follows from the result proven in class.

□

Exercise 3

Let \mathcal{H} be an Hilbert space. Let $U \in \mathcal{B}(\mathcal{H})$. Prove that U is unitary if and only if there exist a self-adjoint operator A on \mathcal{H} such that $U = e^{iA}$.

Proof. Recall that from functional calculus for self-adjoint operators we have $f(A)^* = \overline{f(A)}$. Then, given that $\overline{e^{ix}} = e^{-ix}$, we get $(e^{iA})^* = e^{-iA}$. As a consequence we get $e^{iA}(e^{iA})^* = e^{iA}e^{-iA} = \text{id} = e^{-iA}e^{iA} = (e^{iA})^*e^{iA}$, and therefore $U = e^{iA}$ is a unitary operator.

Suppose now U is unitary. Then we get $\sigma(U) \subseteq \overline{B_1(0)}$ because $\|U\| = 1$. On the other hand we get that if $\lambda \in B_1(0)$, then $U - \lambda \text{id} = U(\text{id} - \lambda U^*) = (\text{id} - \lambda U^*)U$, and given that $\|\lambda U^*\| = |\lambda| < 1$ and U is unitary, then $U - \lambda \text{id}$ is invertible and $\lambda \notin \sigma(U)$. Therefore $\sigma(U) \subseteq \mathbb{S}_1$ (where $\mathbb{S}_1 = \{\psi \in \mathcal{H} \mid \|\psi\| = 1\}$).

Now, the map x^t is bounded from $\sigma(U) \rightarrow \mathbb{C}$ for any $t \in \mathbb{R}$. Define then $U(t) := U^t$, defined through the functional calculus for normal operators. By construction we have that $U(t)$ is a strongly continuous one-parameter unitary group, so let A be the self-adjoint infinitesimal generator. As a consequence of Stone theorem, we get that $U(t) = e^{itA}$, and therefore, $U = U(1) = e^{iA}$.

□

Exercise 4

Let \mathcal{H} be an Hilbert space and $A_+, A_- \in \mathcal{B}(\mathcal{H})$ such that

$$[A_\pm, A_\pm^*] = \text{id}, \quad (2)$$

$$[A_+, A_-] = [A_+, A_-^*] = 0. \quad (3)$$

Let moreover $\eta, \zeta \in \mathbb{R}$, with $\eta > \zeta \geq 0$. Define

$$H := \eta (A_+^* A_+ + A_-^* A_-) + \zeta (A_+^* A_-^* + A_+ A_-). \quad (4)$$

a Prove that H is self-adjoint.

b Prove that there exist operators C_\pm and numbers $\alpha, \beta \in \mathbb{R}$ such that

$$[C_\pm, C_\pm^*] = \text{id}, \quad (5)$$

$$[C_+, C_-] = [C_+, C_-^*] = 0, \quad (6)$$

$$H = \alpha (C_+^* C_+ + C_-^* C_-) + \beta. \quad (7)$$

Hint: Define

$$C_\pm := \gamma_\pm A_\pm + \xi_\pm A_\mp^* \quad (8)$$

for some $\gamma_\pm, \xi_\pm \in \mathbb{R}$. Use (5) and (6) to deduce that $\gamma_+ = \gamma_-$, $\xi_+ = \xi_-$ and that $\gamma_\pm^2 - \xi_\pm^2 = 1$. Calculate $C_\pm^* C_\pm$ and deduce (7).

Proof. To prove **a**, given that A_\pm are bounded operators, first notice that $(A_\pm^* A_\pm)^* = A_\pm^* A_\pm^{**} = A_\pm^* A_\pm$. On the other hand $(A_+^* A_-^*)^* = A_-^{**} A_+^{**} = A_- A_+ = A_+ A_-$, and therefore $(A_+^* A_-^* + A_+ A_-)^* = A_+^* A_- + A_+ A_-$. As a consequence H is self-adjoint.

To prove **b**, consider C_\pm defined as (8). Using (5) we get

$$\begin{aligned} \text{id} &= [C_\pm, C_\pm^*] = [\gamma_\pm A_\pm + \xi_\pm A_\mp^*, \gamma_\pm A_\pm^* + \xi_\pm A_\mp] \\ &= \gamma_\pm^2 [A_\pm, A_\pm^*] + \xi_\pm^2 [A_\mp^*, A_\mp] = (\gamma_\pm^2 - \xi_\pm^2) \text{id}. \end{aligned}$$

Now, given that the function \sinh is bijective, let $\theta_\pm \in \mathbb{R}$ such that $\xi_\pm = \sinh(\theta_\pm)$. Then $\gamma_\pm^2 = 1 + \xi_\pm^2 = 1 + \sinh^2(\theta_\pm) = \cosh(\theta_\pm)$. Using (6) we then get

$$\begin{aligned} 0 &= [C_+, C_-] = [\gamma_+ A_+ + \xi_+ A_-^*, \gamma_- A_- + \xi_- A_+^*] \\ &= \gamma_+ \xi_- [A_+, A_+^*] + \xi_+ \gamma_- [A_-^*, A_-] = (\gamma_+ \xi_- - \xi_+ \gamma_-) \text{id} \\ &= (\cosh(\theta_+) \sinh(\theta_-) - \cosh(\theta_-) \sinh(\theta_+)) \text{id} = \sinh(\theta_- - \theta_+) \text{id}. \end{aligned}$$

From the fact that $\sinh^{-1}(0) = 0$, we get that $\theta_+ = \theta_- = \theta$. We then got that $C_\pm = \cosh(\theta) A_\pm + \sinh(\theta) A_\mp^*$, and we now consider $C_\pm^* C_\pm$:

$$\begin{aligned} C_\pm^* C_\pm &= (\cosh(\theta) A_\pm + \sinh(\theta) A_\mp^*)^* (\cosh(\theta) A_\pm + \sinh(\theta) A_\mp^*) \\ &= (\cosh(\theta) A_\pm^* + \sinh(\theta) A_\mp) (\cosh(\theta) A_\pm + \sinh(\theta) A_\mp^*) \\ &= \cosh^2(\theta) A_\pm^* A_\pm + \sinh^2(\theta) A_\mp A_\mp^* + \sinh(\theta) \cosh(\theta) (A_+^* A_-^* + A_+ A_-) \\ &= \cosh^2(\theta) A_\pm^* A_\pm + \sinh^2(\theta) A_\mp A_\mp^* + \sinh^2(\theta) [A_\mp, A_\mp^*] \\ &\quad + \sinh(\theta) \cosh(\theta) (A_+^* A_-^* + A_+ A_-) \\ &= \cosh^2(\theta) A_\pm^* A_\pm + \sinh^2(\theta) A_\mp A_\mp^* \\ &\quad + \sinh(\theta) \cosh(\theta) (A_+^* A_-^* + A_+ A_-) + \sinh^2(\theta). \end{aligned}$$

Using the fact that $\sinh(2\theta) = 2\sinh(\theta)\cosh(\theta)$ and $\cosh(2\theta) = \cosh^2(\theta) + \sinh^2(2\theta)$, as a consequence we get

$$\begin{aligned}
C_+^* C_+ + C_-^* C_- &= \cosh^2(\theta) A_+^* A_+ + \sinh^2(\theta) A_-^* A_- \\
&\quad + \sinh(\theta) \cosh(\theta) (A_+^* A_-^* + A_+ A_-) + \sinh^2(\theta) \\
&\quad + \cosh^2(\theta) A_-^* A_- + \sinh^2(\theta) A_+^* A_+ \\
&\quad + \sinh(\theta) \cosh(\theta) (A_+^* A_-^* + A_+ A_-) + \sinh^2(\theta) \\
&= \cosh(2\theta) (A_+^* A_+ + A_-^* A_-) + \sinh(2\theta) (A_+^* A_-^* + A_+ A_-) \\
&\quad + 2\sinh^2(\theta).
\end{aligned}$$

Now notice that

$$\left(\frac{\eta}{\sqrt{\eta^2 - \zeta^2}}\right)^2 - \left(\frac{\zeta}{\sqrt{\eta^2 - \zeta^2}}\right)^2 = 1.$$

As a consequence, there is θ such that $\cosh(2\theta) = \frac{\eta}{\sqrt{\eta^2 - \zeta^2}}$ and $\sinh(2\theta) = \frac{\zeta}{\sqrt{\eta^2 - \zeta^2}}$, and as a consequence

$$\begin{aligned}
H &= \eta (A_+^* A_+ + A_-^* A_-) + \zeta (A_+^* A_-^* + A_+ A_-) \\
&= \sqrt{\eta^2 - \zeta^2} [\cosh(2\theta) (A_+^* A_+ + A_-^* A_-) + \sinh(2\theta) (A_+^* A_-^* + A_+ A_-)] \\
&= \sqrt{\eta^2 - \zeta^2} [C_+^* C_+ + C_-^* C_- - 2\sinh^2(\theta)],
\end{aligned}$$

so $\alpha = \sqrt{\eta^2 - \zeta^2}$. Now, we have

$$\begin{aligned}
-2\sqrt{\eta^2 - \zeta^2} \sinh^2(\theta) &= \sqrt{\eta^2 - \zeta^2} (1 - \cosh(2\theta)) = \sqrt{\eta^2 - \zeta^2} \left(1 - \frac{\eta}{\sqrt{\eta^2 - \zeta^2}}\right) \\
&= \sqrt{\eta^2 - \zeta^2} - \eta = -\frac{\zeta^2}{\eta + \sqrt{\eta^2 + \zeta^2}}.
\end{aligned}$$

With α as above and $\beta = \sqrt{\eta^2 - \zeta^2} - \eta$ we then get

$$\begin{aligned}
H &= \sqrt{\eta^2 - \zeta^2} (C_+^* C_+ + C_-^* C_-) - \frac{\zeta^2}{\eta + \sqrt{\eta^2 + \zeta^2}} \\
&= \alpha (C_+^* C_+ + C_-^* C_-) + \beta
\end{aligned}$$

□