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Exercise 1

Let H := L? (R) and P := —id, the momentum operator defined on the domain D (P) :=
H!'(R) as Py (z) = —i%’ (x). Consider for any A € R the bounded operator Ty defined
for any ¢ € H as Ty () = ¢ (z — A).

Prove that {Th}, g is a strongly continuous one-parameter unitary group and that

T\ = ei/\P _ 6)‘61. (1)

Proof. By definition it follows that if A = 0 then for any ¥ € H we get Toy (z) = ¢ (x)
and therefore Ty = id. On the other hand, let A, u € R; then for any ¢ € H we get
T\Typ (x) =Ty (x = A) = (x — X — p) = Thyp (x). Consider now A € R, ¢, ¢ € H; to
prove that T) is a unitary operator we compute T} to get

W, T = Ty, ) = LJ” (= N (z) da = LJ” @ (@ + ) de = (b, Toxp),

and as a consequence Ty = T_,; therefore we get T\TY = ThT_) = Ty = id, IT3T =
T Ty =Ty = id and for any A € R, T} is unitary.

Consider now A the infinitesimal generator of {Th\},_g. Suppose ¢ € H; recall that if F
represent the Fourier transform, we get
71k (z+X) (13) dr = efi)\k{p\ (k) )

FTyi (k e R (z — N dx =

= ke K

Suppose now that 1 € H' (R); then we get for any A

(B = S,

Given that FPvy (k) = /ml)\(k:), we get
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o 1‘ < |k|?, and |k|? ’¢ (k:)‘ e L' (R), we can conclude
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So clearly H! (R) < D (A) and A is an extension of P. Now, given that as a consequence
we have that P* is an extension of A* and that both A and P are self-adjoint, we get
that A = P; therefore by Stone theorem e’ = e’ = Ty
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Exercise 2

Let H be an Hilbert space, A a symmetric operator and p > 0 a positive real number.
Prove that the following are equivalent.

a A is self-adjoint.

b Ran (A +ipid) = Ran (A —ipid) = H.

Proof. In class we proved that if A is symmetric, A = A* if and only if Ran (A £ iid) = H.
Now, A is symmetric if and only if iA is, and given that A + ipid = p (iA + iid),

Ran (A + ipid) = Ran (iA + iid), the result follows from the result proven in class.

Exercise 3

Let ‘H be an Hilbert space. Let U € B (H). Prove that U is unitary if and only if there
exist a self-adjoint operator A on H such that U = e'4.

Proof. Recall that from functional calculus for self-adjoint operators we have f (A)* =
f(A). Then, given that e* = e~ we get (e’A)* — e As a consequence we get
et (e"A)ﬂ< = ¢dem = id = e Meid = (eiA)* e, and therefore U = ¢ is a unitary
operator.

Suppose now U is unitary. Then we get o (U) € Bj (0) because |U| = 1. On the other
hand we get that if A € B; (0), then U — Xid = U (id —A\U*) = (id —AU*) U, and given
that |[AU*| = |A| <1 and U is unitary, then U —\id is invertible and A ¢ o (U). Therefore
o(U) < Sy (where S1 = {¢p € H| ||¢| = 1}).

Now, the map z! is bounded from o (U) — C for any t € R. Define then U (t) := U,
defined through the functional calculus for normal operators. By construction we have that
U (t) is a strongly continuous one-parameter unitary group, so let A be the self-adjoint
infinitesimal generator. As a consequence of Stone theorem, we get that U (t) = ¢4, and

therefore, U = U (1) = €.
O



Exercise 4

Let H be an Hilbert space and A,, A_ € B(H) such that
[As, A*] id, (2)
A+a [AJra A* ] (3)

Let moreover 1, ( € R, with n > { > 0. Define
H:=n (A"_TFAJr + A*_A_) +¢ (A"_;Ai + A+A_) . (4)

a Prove that H is self-adjoint.

b Prove that there exist operators C'y and numbers «, S € R such that
[Cia C;] = id? (5)
[C,C_]=[Cy,C*] =0, (6)
H=ao(CiCi+C*C_) +p.
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Hint: Define
Ot =+ A+ + &A% (8)
for some v+, &+ € R. Use (5) and (6) to deduce that v+ = v—, &4 = & and that
— & = 1. Calculate C¥Cy and deduce (7).

Proof. To prove a, given that A4 are bounded operators, first notice that (AiAi)* =
AT AT = AL AL, On the other hand (A";A”j)* = AMAT = A_Ay = ALA_, and
therefore (A* A* + A+A_)* = A% A* + AL A_. As a consequence H is self-adjoint.

To prove b , consider Cy defined as (8). Using (5) we get
id = [Cy,Cf] = [y2 Az + E£ AL 72 AT + €4 A7)

o [As AT]+ € [T A5] = (2 — €2 i,
Now, given that the function sinh is bijective, let 64 € R such that £+ = sinh (64 ). Then
72 =1+ ¢&2 =1 +sinh? (A1) = cosh (6 ). Using (6) we then get
0=[Cy,C ] = [y3 Ay + &4 AT v A+ € AT

=y & AL AL+ 6y [AT A ] = (1 —&v)id
= (cosh (64)sinh (f_) — cosh (6_) sinh (A, ))id = sinh (— — 0 )id.

From the fact that sinh™! (0) = 0, we get that #, = f_ = 6. We then got that Cy =
cosh () A4 + sinh (0) A%, and we now consider C}Cy:

C3Cy = (cosh () Ay + sinh (6) A})* (cosh () Ay + sinh () A%)
= (cosh (0) A% + sinh () A5) (cosh () A+ + sinh (9) A%)
= cosh? (0) A% Ay + sinh? (9) A7 A% + sinh () cosh (0) (AL A* + AL A)

cosh? (0) A% Ay + sinh? (0) AL A1 + sinh® (0) [A5, A%]
+ sinh (9) cosh (6) (A% A* + A, A_)

cosh? () AL Ay + sinh® (0) A% Ay
+ sinh () cosh (0) (A% A* + AL A_) + sinh? (0) .



Using the fact that sinh (20) = 2sinh (#) cosh (f) and cosh (26) = cosh? () + sinh? (26),
as a consequence we get
C*Cy + C*C_ = cosh? (0) A* A, +sinh? (9) A* A_
+ sinh () cosh (0) (A% A* + AL A_) + sinh® (0)
+ cosh? () A* A_ + sinh? () A* A,
+ sinh () cosh (9) (A% A* + AL A_) + sinh? (9)
= cosh (20) (A5 Ay + A* A_) +sinh (20) (AT A" + AL A_)
+ 2sinh? (0).

Now notice that

(=) - (=2) -

As a consequence, there is 6 such that cosh (20) = \/;7742 and sinh (20) = \/24742, and
U n*—

as a consequence
Ho=n(A* Ay + A* A) +C (AT A* + A, A)
— /0% — (2 [cosh (20) (A* A, + A* A_) + sinh (20) (A* A* + A, A_)]
— VP = [CrCy + C*C_ — 2sinh? (0)]

so a = 4/n? — (2. Now, we have

—24/112 — (2sinb’® (0) = /112 — (2 (1 — cosh (20)) = v/n? — (2 (1 - \/77277_7@>
4-2
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With « as above and 8 = +/n? — (2 — 1 we then get

C2
H=+n?-C(CC +C*C) = ———
PG (GO0 n+/n*+ ¢

—a(CiCL+C*C_) + 8



