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Exercise 1

Let H :“ L2 pRq and P :“ ´iBx the momentum operator defined on the domain D pP q :“
H1 pRq as Pψ pxq “ ´iBψ

Bx pxq. Consider for any λ P R the bounded operator Tλ defined
for any ψ P H as Tλψ pxq “ ψ px´ λq.

Prove that tTλuλPR is a strongly continuous one-parameter unitary group and that

Tλ “ eiλP “ eλBx . (1)

Proof. By definition it follows that if λ “ 0 then for any ψ P H we get T0ψ pxq “ ψ pxq
and therefore T0 “ id. On the other hand, let λ, µ P R; then for any ψ P H we get
TλTµψ pxq “ Tµψ px´ λq “ ψ px´ λ´ µq “ Tλ`µ pxq. Consider now λ P R, ψ, ϕ P H; to
prove that Tλ is a unitary operator we compute T ˚λ to get

xψ, T ˚λϕy “ xTλψ,ϕy “

ż

R
ψ px´ λqϕ pxq dx “

ż

R
ψ pxqϕ px` λq dx “ xψ, T´λϕy,

and as a consequence T ˚λ “ T´λ; therefore we get TλT
˚
λ “ TλT´λ “ T0 “ id, T ˚λTλ “

T´λTλ “ T0 “ id and for any λ P R, Tλ is unitary.

Consider now A the infinitesimal generator of tTλuλPR. Suppose ψ P H; recall that if F
represent the Fourier transform, we get

FTλψ pkq “
1
?

2π

ż

R
e´ikxψ px´ λq dx “

1
?

2π

ż

R
e´ikpx`λqψ pxq dx “ e´iλk pψ pkq .

Suppose now that ψ P H1 pRq; then we get for any λ

F
ˆ

Tλ ´ id

λ
ψ

˙

pkq “
e´iλk ´ 1

λ
pψ pkq .

Given that FPψ pkq “ k pψ pkq, we get

›

›

›

›

Tλ ´ id

λ
ψ ´ iPψ

›

›

›

›

2

2

“

›

›

›

›

e´iλk ´ 1

λ
pψ ´ ik pψ

›

›

›

›

2

2

“

ż

R

ˇ

ˇ

ˇ

ˇ

e´iλk ´ 1

λ
´ ik

ˇ

ˇ

ˇ

ˇ

2

|ψ pkq|2 dk

Given that
ˇ

ˇ

ˇ

e´iλk´1
λ

ˇ

ˇ

ˇ

2
ď |k|2, and |k|2

ˇ

ˇ

ˇ

pψ pkq
ˇ

ˇ

ˇ

2
P L1 pRq, we can conclude

lim
λÑ0

›

›

›

›

Tλ ´ id

λ
ψ ´ iPψ

›

›

›

›

2

2

“

ż

R
lim
λÑ0

ˇ

ˇ

ˇ

ˇ

e´iλk ´ 1

λ
´ ik

ˇ

ˇ

ˇ

ˇ

2

|ψ pkq|2 dk “ 0.
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So clearly H1 pRq Ď D pAq and A is an extension of P . Now, given that as a consequence
we have that P ˚ is an extension of A˚ and that both A and P are self-adjoint, we get
that A “ P ; therefore by Stone theorem eλBx “ eiλP “ Tλ.

Exercise 2

Let H be an Hilbert space, A a symmetric operator and µ ą 0 a positive real number.
Prove that the following are equivalent.

a A is self-adjoint.

b Ran pA` iµ idq “ Ran pA´ iµ idq “ H.

Proof. In class we proved that if A is symmetric, A “ A˚ if and only if Ran pA˘ i idq “ H.

Now, A is symmetric if and only if 1
µA is, and given that A ` iµ id “ µ

´

1
µA` i id

¯

,

Ran pA` iµ idq “ Ran
´

1
µA` i id

¯

, the result follows from the result proven in class.

Exercise 3

Let H be an Hilbert space. Let U P B pHq. Prove that U is unitary if and only if there
exist a self-adjoint operator A on H such that U “ eiA.

Proof. Recall that from functional calculus for self-adjoint operators we have f pAq˚ “
f pAq. Then, given that eix “ e´ix, we get

`

eiA
˘˚
“ e´iA. As a consequence we get

eiA
`

eiA
˘˚
“ eiAe´iA “ id “ e´iAeiA “

`

eiA
˘˚
eiA, and therefore U “ eiA is a unitary

operator.

Suppose now U is unitary. Then we get σ pUq Ď B1 p0q because }U} “ 1. On the other
hand we get that if λ P B1 p0q, then U ´ λ id “ U pid´λU˚q “ pid´λU˚qU , and given
that }λU˚} “ |λ| ă 1 and U is unitary, then U´λ id is invertible and λ R σ pUq. Therefore
σ pUq Ď S1 (where S1 “ tψ P H| }ψ} “ 1u).

Now, the map xt is bounded from σ pUq Ñ C for any t P R. Define then U ptq :“ U t,
defined through the functional calculus for normal operators. By construction we have that
U ptq is a strongly continuous one-parameter unitary group, so let A be the self-adjoint
infinitesimal generator. As a consequence of Stone theorem, we get that U ptq “ eitA, and
therefore, U “ U p1q “ eiA.
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Exercise 4

Let H be an Hilbert space and A`, A´ P B pHq such that
“

A˘, A
˚
˘

‰

“ id, (2)

rA`, A´s “
“

A`, A
˚
´

‰

“ 0. (3)

Let moreover η, ζ P R, with η ą ζ ě 0. Define

H :“ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

. (4)

a Prove that H is self-adjoint.

b Prove that there exist operators C˘ and numbers α, β P R such that
“

C˘, C
˚
˘

‰

“ id, (5)

rC`, C´s “
“

C`, C
˚
´

‰

“ 0, (6)

H “ α
`

C˚`C` ` C
˚
´C´

˘

` β. (7)

Hint: Define
C˘ :“ γ˘A˘ ` ξ˘A

˚
¯ (8)

for some γ˘, ξ˘ P R. Use (5) and (6) to deduce that γ` “ γ´, ξ` “ ξ´ and that
γ2˘ ´ ξ

2
˘ “ 1. Calculate C˚˘C˘ and deduce (7).

Proof. To prove a, given that A˘ are bounded operators, first notice that
`

A˚˘A˘
˘˚
“

A˚˘A
˚˚
˘ “ A˚˘A˘. On the other hand

`

A˚`A
˚
´

˘˚
“ A˚˚´ A

˚˚
` “ A´A` “ A`A´, and

therefore
`

A˚`A
˚
´ `A`A´

˘˚
“ A˚`A

˚
´ `A`A´. As a consequence H is self-adjoint.

To prove b , consider C˘ defined as (8). Using (5) we get

id “
“

C˘, C
˚
˘

‰

“
“

γ˘A˘ ` ξ˘A
˚
¯, γ˘A

˚
˘ ` ξ˘A¯

‰

“ γ2˘
“

A˘, A
˚
˘

‰

` ξ2˘
“

A˚¯, A¯
‰

“
`

γ2˘ ´ ξ
2
˘

˘

id .

Now, given that the function sinh is bijective, let θ˘ P R such that ξ˘ “ sinh pθ˘q. Then
γ2˘ “ 1` ξ2˘ “ 1` sinh2 pθ˘q “ cosh pθ˘q. Using (6) we then get

0 “ rC`, C´s “
“

γ`A` ` ξ`A
˚
´, γ´A´ ` ξ´A

˚
`

‰

“ γ`ξ´
“

A`, A
˚
`

‰

` ξ`γ´
“

A˚´, A´
‰

“ pγ`ξ´ ´ ξ`γ´q id

“ pcosh pθ`q sinh pθ´q ´ cosh pθ´q sinh pθ`qq id “ sinh pθ´ ´ θ`q id .

From the fact that sinh´1 p0q “ 0, we get that θ` “ θ´ “ θ. We then got that C˘ “
cosh pθqA˘ ` sinh pθqA˚¯, and we now consider C˚˘C˘:

C˚˘C˘ “
`

cosh pθqA˘ ` sinh pθqA˚¯
˘˚ `

cosh pθqA˘ ` sinh pθqA˚¯
˘

“
`

cosh pθqA˚˘ ` sinh pθqA¯
˘ `

cosh pθqA˘ ` sinh pθqA˚¯
˘

“ cosh2 pθqA˚˘A˘ ` sinh2 pθqA¯A
˚
¯ ` sinh pθq cosh pθq

`

A˚`A
˚
´ `A`A´

˘

“ cosh2 pθqA˚˘A˘ ` sinh2 pθqA˚¯A¯ ` sinh2 pθq
“

A¯, A
˚
¯

‰

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

“ cosh2 pθqA˚˘A˘ ` sinh2 pθqA˚¯A¯

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

` sinh2 pθq .
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Using the fact that sinh p2θq “ 2 sinh pθq cosh pθq and cosh p2θq “ cosh2 pθq ` sinh2 p2θq,
as a consequence we get

C˚`C` ` C
˚
´C´ “ cosh2 pθqA˚`A` ` sinh2 pθqA˚´A´

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

` sinh2 pθq

` cosh2 pθqA˚´A´ ` sinh2 pθqA˚`A`

` sinh pθq cosh pθq
`

A˚`A
˚
´ `A`A´

˘

` sinh2 pθq

“ cosh p2θq
`

A˚`A` `A
˚
´A´

˘

` sinh p2θq
`

A˚`A
˚
´ `A`A´

˘

` 2 sinh2 pθq .

Now notice that
˜

η
a

η2 ´ ζ2

¸2

´

˜

ζ
a

η2 ´ ζ2

¸2

“ 1.

As a consequence, there is θ such that cosh p2θq “ η?
η2´ζ2

and sinh p2θq “ ζ?
η2´ζ2

, and

as a consequence

H “ η
`

A˚`A` `A
˚
´A´

˘

` ζ
`

A˚`A
˚
´ `A`A´

˘

“
a

η2 ´ ζ2
“

cosh p2θq
`

A˚`A` `A
˚
´A´

˘

` sinh p2θq
`

A˚`A
˚
´ `A`A´

˘‰

“
a

η2 ´ ζ2
“

C˚`C` ` C
˚
´C´ ´ 2 sinh2 pθq

‰

,

so α “
a

η2 ´ ζ2. Now, we have

´2
a

η2 ´ ζ2 sinh2 pθq “
a

η2 ´ ζ2 p1´ cosh p2θqq “
a

η2 ´ ζ2

˜

1´
η

a

η2 ´ ζ2

¸

“
a

η2 ´ ζ2 ´ η “ ´
ζ2

η `
a

η2 ` ζ2
.

With α as above and β “
a

η2 ´ ζ2 ´ η we then get

H “
a

η2 ´ ζ2
`

C˚`C` ` C
˚
´C´

˘

´
ζ2

η `
a

η2 ` ζ2

“ α
`

C˚`C` ` C
˚
´C´

˘

` β
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